Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metallomics ; 16(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38289854

RESUMEN

Aging is the main risk factor for Alzheimer's disease (AD). AD is linked to alterations in metal homeostasis and changes in stable metal isotopic composition can occur, possibly allowing the latter to serve as relevant biomarkers for potential AD diagnosis. Copper stable isotopes are used to investigate changes in Cu homeostasis associated with various diseases. Prior work has shown that in AD mouse models, the accumulation of 63Cu in the brain is associated with the disease's progression. However, our understanding of how the normal aging process influences the brain's isotopic composition of copper remains limited. In order to determine the utility and predictive power of Cu isotopes in AD diagnostics, we aim-in this study-to develop a baseline trajectory of Cu isotopic composition in the normally aging mouse brain. We determined the copper concentration and isotopic composition in brains of 30 healthy mice (WT) ranging in age from 6 to 12 mo, and further incorporate prior data obtained for 3-mo-old healthy mice; this range approximately equates to 20-50 yr in human equivalency. A significant 65Cu enrichment has been observed in the 12-mo-old mice compared to the youngest group, concomitant with an increase in Cu concentration with age. Meanwhile, literature data for brains of AD mice display an enrichment in 63Cu isotope compared to WT. It is acutely important that this baseline enrichment in 65Cu is fully constrained and normalized against if any coherent diagnostic observations regarding 63Cu enrichment as a biomarker for AD are to be developed.


Asunto(s)
Envejecimiento , Encéfalo , Cobre , Animales , Cobre/metabolismo , Cobre/análisis , Envejecimiento/metabolismo , Ratones , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Endogámicos C57BL , Masculino , Humanos
2.
Anal Bioanal Chem ; 415(27): 6839-6850, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37755490

RESUMEN

The stable calcium (Ca) isotopes offer a minimally invasive method for assessing Ca balance in the body, providing a new avenue for research and clinical applications. In this study, we measured the Ca isotopic composition of soft tissues (brain, muscle, liver, and kidney), mineralized tissue (bone), and blood (plasma) from 10 mice (5 females and 5 males) with three different genetic backgrounds and same age (3 months old). The results reveal a distinctive Ca isotopic composition in different body compartments of mice, primally controlled by each compartment's unique Ca metabolism and genetic background, independent of sex. The bones are enriched in the lighter Ca isotopes (δ44/40Cabone = - 0.10 ± 0.55 ‰) compared to blood and other soft tissues, reflecting the preferential incorporation of lighter Ca isotopes through bone formation, while heavier Ca isotopes remain preferentially in blood. The brain and muscle are enriched in lighter Ca isotopes (δ44/40Cabrain = - 0.10 ± 0.53 ‰; δ44/40Camuscle = 0.19 ± 0.41 ‰) relative to blood and other soft tissues, making the brain the isotopically lightest soft tissues of the mouse body. In contrast, the kidney is enriched in heavier isotopes (δ44/40Cakidney = 0.86 ± 0.31 ‰) reflecting filtration and reabsorption by the kidney. This study provides important insight into the Ca isotopic composition of various body compartments and fluids.

3.
J Fish Biol ; 103(6): 1357-1373, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37632330

RESUMEN

River sharks (Glyphis spp.) and some sawfishes (Pristidae) inhabit riverine environments, although their long-term habitat use patterns are poorly known. We investigated the diadromous movements of the northern river shark (Glyphis garricki), speartooth shark (Glyphis glyphis), narrow sawfish (Anoxypristis cuspidata), and largetooth sawfish (Pristis pristis) using in situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on vertebrae to recover elemental ratios over each individual's lifetime. We also measured elemental ratios for the bull shark (Carcharhinus leucas) and a range of inshore and offshore stenohaline marine species to assist in interpretation of results. Barium (Ba) was found to be an effective indicator of freshwater use, whereas lithium (Li) and strontium (Sr) were effective indicators of marine water use. The relationships between Ba and Li and Ba and Sr were negatively correlated, whereas the relationship between Li and Sr was positively correlated. Both river shark species had elemental signatures indicative of prolonged use of upper-estuarine environments, whereas adults appear to mainly use lower-estuarine environments rather than marine environments. Decreases in Li:Ba and Sr:Ba at the end of the prenatal growth zone of P. pristis samples indicated that parturition likely occurs in fresh water. There was limited evidence of prolonged riverine habitat use for A. cuspidata. The results of this study support elemental-environment relationships observed in teleost otoliths and indicate that in situ LA-ICP-MS elemental characterization is applicable to a wide range of elasmobranch species as a discriminator for use and movement across salinity gradients. A greater understanding of processes that lead to element incorporation in vertebrae, and relative concentrations in vertebrae with respect to the ambient environment, will improve the applicability of elemental analysis to understand movements across the life history of elasmobranchs into the future.


Asunto(s)
Tiburones , Rajidae , Animales , Tiburones/metabolismo , Ecosistema , Agua Dulce/química , Rajidae/metabolismo , Estroncio/análisis , Columna Vertebral/química
4.
Metallomics ; 15(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37197928

RESUMEN

Potassium (K) is an essential electrolyte for cellular functions in living organisms, and disturbances in K+ homeostasis could lead to various chronic diseases (e.g. hypertension, cardiac disease, diabetes, and bone health). However, little is known about the natural distribution of stable K isotopes in mammals and their application to investigate bodily homeostasis and/or as biomarkers for diseases. Here, we measured K isotopic compositions (δ41K, per mil deviation of 41K/39K from the NIST SRM 3141a standard) of brain, liver, kidney, and red blood cells (RBCs) from 10 mice (five females and five males) with three different genetic backgrounds. Our results reveal that different organs and RBCs have distinct K isotopic signatures. Specifically, the RBCs have heavy K isotopes enrichment with δ41K ranging from 0.67 to 0.08‰, while the brains show lighter K isotopic compositions with δ41K ranging from -1.13 to -0.09‰ compared to the livers (δ41K = -0.12 ± 0.58‰) and kidneys (δ41K = -0.24 ± 0.57‰). We found that the K isotopic and concentration variability is mostly controlled by the organs, with a minor effect of the genetic background and sex. Our study suggests that the K isotopic composition could be used as a biomarker for changes in K+ homeostasis and related diseases such as hypertension, cardiovascular, and neurodegenerative diseases.


Asunto(s)
Hipertensión , Potasio , Masculino , Femenino , Animales , Ratones , Isótopos , Isótopos de Potasio , Eritrocitos , Mamíferos
5.
Metallomics ; 14(12)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36416864

RESUMEN

Natural stable metal isotopes have shown utility in differentiation between healthy and diseased brain states (e.g. Alzheimer's disease, AD). While the AD brain accumulates some metals, it purges others, namely K (accompanied by increased serum K, suggesting brain-blood transferal). Here, K isotope compositions of Göttingen minipig brain regions for two AD models at midlife are reported. Results indicate heavy K isotope enrichment where amyloid beta (Aß) accumulation is observed, and this enrichment correlates with relative K depletion. These results suggest preferential efflux of isotopically light K+ from the brain, a linkage between brain K concentrations and isotope compositions, and linkage to Aß (previously shown to purge cellular brain K+). Brain K isotope compositions differ from that for serum and brain K is much more abundant than in serum, suggesting that changes in brain K may transfer a measurable K isotope excursion to serum, thereby generating an early AD biomarker.


Asunto(s)
Enfermedad de Alzheimer , Porcinos , Animales , Humanos , Péptidos beta-Amiloides/metabolismo , Porcinos Enanos/metabolismo , Encéfalo/metabolismo , Metales , Isótopos
6.
Metallomics ; 14(5)2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35294027

RESUMEN

Copper (Cu) stable isotopes are useful for understanding pathways and tracing changes in Cu homeostasis, such as those induced by various diseases (e.g. liver cirrhosis, numerous forms of cancer, and neurodegenerative diseases). However, this utility relies on a baseline understanding of the natural distribution of Cu isotopes between organs of healthy organisms, which is not well-known at present. Here, the distribution of natural Cu isotopes in the brain, liver, red blood cells, plasma, kidneys, and muscle of 14 mice (7 males and 7 females) from three different genetic backgrounds is assessed. We show that the Cu isotopic composition of most mouse organs is isotopically distinct from one another. The most striking feature is the heavy isotope enrichment of the kidney (δ65Cu = 1.65 ± 0.06‰, 2SE), brain (δ65Cu = 0.87 ± 0.03‰, 2SE) and liver (δ65Cu = 0.71 ± 0.24‰, 2SE) compared to blood components, i.e. red blood cells (RBCs) (δ65Cu = 0.30 ± 0.06‰, 2SE), and plasma (δ65Cu = -0.61 ± 0.08‰, 2SE), with δ65Cu being the per mil deviation of the 65Cu/63Cu ratio from the NIST SRM 976 standard. Differences in genetic background do not appear to affect the isotopic distribution of Cu. Interestingly, male and female mice appear to have different Cu concentrations and isotopic compositions in their brain, plasma, muscle, and RBC. By demonstrating that organs have distinct isotopic compositions, our study reinforces the notion that Cu stable isotopes can be used to trace changes in homeostasis in diseases affecting Cu distribution, such as Alzheimer's disease, liver cancer, and possible chronic kidney failure.


Asunto(s)
Enfermedad de Alzheimer , Cobre , Animales , Encéfalo/metabolismo , Cobre/metabolismo , Femenino , Isótopos/metabolismo , Masculino , Ratones
8.
Nat Commun ; 12(1): 4128, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226532

RESUMEN

Numerous geochemical anomalies exist at the K-Pg boundary that indicate the addition of extraterrestrial materials; however, none fingerprint volatilization, a key process that occurs during large bolide impacts. Stable Zn isotopes are an exceptional indicator of volatility-related processes, where partial vaporization of Zn leaves the residuum enriched in its heavy isotopes. Here, we present Zn isotope data for sedimentary rock layers of the K-Pg boundary, which display heavier Zn isotope compositions and lower Zn concentrations relative to surrounding sedimentary rocks, the carbonate platform at the impact site, and most carbonaceous chondrites. Neither volcanic events nor secondary alteration during weathering and diagenesis can explain the Zn concentration and isotope signatures present. The systematically higher Zn isotope values within the boundary layer sediments provide an isotopic fingerprint of partially evaporated material within the K-Pg boundary layer, thus earmarking Zn volatilization during impact and subsequent ejecta transport associated with an impact at the K-Pg.

9.
Alzheimers Dement (Amst) ; 12(1): e12112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33102682

RESUMEN

Introduction: Alzheimer's disease (AD) is neuropathologically marked by amyloid beta (Aß) plaques and neurofibrillary tangles. Little is known about isotopic compositions of human AD brains. Here we study this in comparison with control subjects for copper and zinc. Methods: We use mass-spectrometry methods, developed to study extraterrestrial materials, to compare the copper and zinc isotopic composition of 10 AD and 10 control brains. Results: Copper and zinc natural isotopic compositions of AD brains are statistically different compared to controls, and correlate with Braak stages. Discussion: The distribution of natural copper and zinc isotopes in AD is not affected by the diet, but is a consequence of Aß plaques and tau fibril accumulation. This is well predicted by the changes of the chemical bonding environment caused by the development of Aß lesions and accumulation of tau proteins. Future work will involve testing whether these changes affect brain functions and are propagated to body fluids.

10.
Metallomics ; 12(10): 1585-1598, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33084720

RESUMEN

Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aß) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Metales/metabolismo , Envejecimiento , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Hierro/metabolismo , Isótopos/metabolismo , Porcinos , Porcinos Enanos
11.
Cell Mol Life Sci ; 77(17): 3293-3309, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32130428

RESUMEN

Metallomics is a rapidly evolving field of bio-metal research that integrates techniques and perspectives from other "-omics" sciences (e.g. genomics, proteomics) and from research vocations further afield. Perhaps the most esoteric of this latter category has been the recent coupling of biomedicine with element and isotope geochemistry, commonly referred to as isotope metallomics. Over the course of less than two decades, isotope metallomics has produced numerous benchmark studies highlighting the use of stable metal isotope distribution in developing disease diagnostics-e.g. cancer, neurodegeneration, osteoporosis-as well as their utility in deciphering the underlying mechanisms of such diseases. These pioneering works indicate an enormous wealth of potential and provide a call to action for researchers to combine and leverage expertise and resources to create a clear and meaningful path forward. Doing so with efficacy and impact will require not only building on existing research, but also broadening collaborative networks, bolstering and deepening cross-disciplinary channels, and establishing unified and realizable objectives. The aim of this review is to briefly summarize the field and its underpinnings, provide a directory of the state of the art, outline the most encouraging paths forward, including their limitations, outlook and speculative upcoming breakthroughs, and finally to offer a vision of how to cultivate isotope metallomics for an impactful future.


Asunto(s)
Metales/metabolismo , Investigación Biomédica , Cromatografía por Intercambio Iónico , Humanos , Marcaje Isotópico , Espectrometría de Masas , Metales/análisis , Neoplasias/metabolismo , Neoplasias/patología , Osteoporosis/metabolismo , Osteoporosis/patología
12.
Proc Natl Acad Sci U S A ; 115(34): 8547-8552, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082398

RESUMEN

Chondrites and their main components, chondrules, are our guides into the evolution of the Solar System. Investigating the history of chondrules, including their volatile element history and the prevailing conditions of their formation, has implications not only for the understanding of chondrule formation and evolution but for that of larger bodies such as the terrestrial planets. Here we have determined the bulk chemical composition-rare earth, refractory, main group, and volatile element contents-of a suite of chondrules previously dated using the Pb-Pb system. The volatile element contents of chondrules increase with time from ∼1 My after Solar System formation, likely the result of mixing with a volatile-enriched component during chondrule recycling. Variations in the Mn/Na ratios signify changes in redox conditions over time, suggestive of decoupled oxygen and volatile element fugacities, and indicating a decrease in oxygen fugacity and a relative increase in the fugacities of in-fluxing volatiles with time. Within the context of terrestrial planet formation via pebble accretion, these observations corroborate the early formation of Mars under relatively oxidizing conditions and the protracted growth of Earth under more reducing conditions, and further suggest that water and volatile elements in the inner Solar System may not have arrived pairwise.

13.
Metallomics ; 10(9): 1264-1281, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30128473

RESUMEN

The role of metals in biologic systems is manifold, and understanding their behaviour in bodily processes, especially those relating to neurodegenerative diseases, is at the forefront of medical science. The function(s) of metals - such as the transition metals - and their utility in both the diagnosis and treatment of diseases in human beings, is often examined via the characterization of their distribution in animal models, with porcine models considered exceptional proxies for human physiology. To this end, we have investigated the homeostatic distribution of numerous metals (Mg, K, Ca, Mn, Fe, Cu, Zn, Rb and Mo), the non-metal P, and Zn isotopes in the organs and blood (red blood cells, plasma) of Göttingen minipigs. These results represent the first set of data outlining the homeostatic distribution of metals and Zn isotopes in Göttingen minipigs, and indicate a relatively homogeneous distribution of alkali/alkaline earth metals and P among the organs, with generally lower levels in the blood, while indicating more heterogeneous and systematic abundance patterns for transition metals. In general, the distribution of all elements analysed is similar to that found in humans. Our elemental abundance data, together with data reported for humans in the literature, suggest that element-to-element ratios, e.g. Cu/Mg, show potential as simple diagnostics for diseases such as Alzheimer's. Isotopic data indicate a heterogeneous distribution of Zn isotopes among the organs and blood, with the liver, heart and brain being the most depleted in heavy Zn isotopes, and the blood the most enriched, consistent with observations in other animal models and humans. The Zn isotopic composition of Göttingen minipigs displays a systematic offset towards lighter δ66Zn values relative to mice and sheep models, suggesting physiology that is more closely aligned with that of humans. Cumulatively, these observations strongly suggest that Göttingen minipigs are an excellent animal model for translational research involving metals, and these data provide a strong foundation for future research.


Asunto(s)
Isótopos/metabolismo , Metales/metabolismo , Zinc/metabolismo , Animales , Encéfalo/metabolismo , Homeostasis , Humanos , Hígado/metabolismo , Ratones , Miocardio/metabolismo , Ovinos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...